Inverse hyperbolic tangent function online calculation



APP description

Hyperbolic function

\(sinhx = [ e^x - e^{-x} ] / 2\) ,x∈R

\(coshx = [ e^x + e^{-x} ] / 2\) ,x∈R

\(tanhx = sinhx / coshx = [ e^x - e^{-x} ] / [ e^x + e^{-x} ]\) ,x∈R

Inverse hyperbolic function (inverse function of hyperbolic function)

\(arsinhx = ln[ x + √( x^2 + 1 ) ]\) ,x∈R

\(arcoshx = ln[ x + √( x^2 - 1 ) ]\) ,x∈[1,+∝)

\(artanhx = ln[ √( 1 - x^2 ) / ( 1 - x ) ] = (1/2) ln[ ( 1 + x ) / ( 1 - x ) ]\) ,x∈[-1,1)

Usage example

Number: 5

Click "calculate" to output the result

Inverse hyperbolic tangent function: 1.000091

 

    Sign in for comments!
Comment list (0)

Powered by TorCMS (https://github.com/bukun/TorCMS).