Python vector and raster data processing

Author : houxue   2023-03-07 15:20:27 Browse: 1310
Category : Python

Abstract: 1.Python processing raster image 1.1 Read tif import rasterio from rasterio.plot import show from matplotlib import colors, cm rs ...

1.Python processing raster image

1.1 Read tif

import rasterio
from rasterio.plot import show
from matplotlib import colors, cm
rs = rasterio.open(r'C:\Users\lenovo\Desktop\pzh_map_dispose\sf1.tif','r')
result1=rs.read()

1.2 Replace Nodata data

#If the conditions are met, replace it; otherwise, keep it as it is
result=np.where(result1==result1.min(),np.nan,result1)
result
# np.unique(rss[0])

out:

array([[[nan, nan, nan, ..., nan, nan, nan],

[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan],
...,
[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan],
[nan, nan, nan, ..., nan, nan, nan]]])

1.3 Display TIF

import geopandas as gpd
shp = gpd.read_file(r"C:\Users\lenovo\Desktop\pzh_map_dispose\pzh_city.shp")
fig, ax = plt.subplots(figsize=(5,9))
shp.plot(ax=ax,color='none')
show(result, transform=rs_mask.transform,ax=ax, cmap='gist_earth')
fig.colorbar(cm.ScalarMappable(norm=colors.Normalize(vmin=np.nanmin(result), vmax=np.nanmax(result)), cmap='gist_earth')
             , ax=ax,extend='both',fraction=0.05)

Display TIF

2.An example from scratch - full version

2.1 Create shp faces and write files

import os
import geopandas
from shapely import geometry
import matplotlib.pyplot as plt
x1,y1=30,30  
x2,y2=50,50
# Corresponds to Polygon in shapely.geometry, which is used to represent faces. Next, we create a polygon object composed of several Polygon objects
cq = geopandas.GeoSeries([geometry.Polygon([(x1,y1), (x2,y1), (x2,y2), (x1,y2)]),
                          geometry.Polygon([(x2,y1),(55,40), (x2,y2)])
                          ],
                         index=['1', '2'],  # Build an index field
                         crs='EPSG:4326',  # The coordinate system is WGS 1984
                         )
cq.to_file(r'simple_poly.shp',
           driver='ESRI Shapefile',
           encoding='utf-8')
cq

Create shp face and write to file

2.2 Read using geopandas

gdf=geopandas.read_file(r'simple_poly.shp')
gdf
gdf.plot(column='index')

Read using geopandas

2.3 Convert to grid - convert to grid according to field

# Vector data to grid: no template required
def shpToRaster2(shp_path,raster_path,cellsize,field):
    '''
    Vector data to grid: No template required
    :param shp_path:Vector data to be converted
    :param raster_path:Grid save path after export
    :param cellsize:Cell size
    :param field:Vector data field as grid value
    :return:
    '''
    shp = ogr.Open(shp_path)
    m_layer = shp.GetLayer()
    extent = m_layer.GetExtent()    
    Xmin = extent[0]    
    Xmax = extent[1]    
    Ymin = extent[2]    
    Ymax = extent[3]  
    rows = int((Ymax - Ymin)/cellsize);    
    cols = int((Xmax - Xmin) / cellsize);    
    GeoTransform = [Xmin,cellsize,0,Ymax,0,-cellsize]    
    target_ds = gdal.GetDriverByName('GTiff').Create(raster_path, xsize=cols, ysize=rows, bands=1, eType=gdal.GDT_Float32) 
    target_ds.SetGeoTransform(GeoTransform)        target_ds.SetProjection(str(pro)) # Get projection must be converted to string  
    band = target_ds.GetRasterBand(1)
    pro = m_layer.GetSpatialRef()

    band.SetNoDataValue(-999)    
    band.FlushCache()
    # target_ds.SetProjection('GEOGCS["GCS_China_Geodetic_Coordinate_System_2000",DATUM["China_2000",SPHEROID["CGCS2000",6378137,298.257222101]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AXIS["Latitude",NORTH],AXIS["Longitude",EAST]]')    gdal.RasterizeLayer(target_ds, [1], m_layer, options=["ATTRIBUTE=%s"%field,'ALL_TOUCHED=TRUE'])  # Assign value to grid pixel with shp field
    del target_ds
    shp.Release()
    vector_fn=r'simple_poly.shp'
    raster_fn=r'two_region.tif'
    shpToRaster2(vector_fn,raster_fn,cellsize=0.5,field='index')

2.4 Display raster image

def showraster(inputtif): import rasterio from rasterio.plot import show from matplotlib import colors, cm rs =rasterio.open(inputtif)
rss=rs.read() #If the conditions are met, replace it; otherwise, keep it as it is result=np.where(rss==rss.min(),np.nan,rss) fig, ax = plt.subplots(figsize=(4,4)) show(result, transform=rs.transform,ax=ax, cmap='cool') from mpl_toolkits.axes_grid1 import make_axes_locatable divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="3%", pad=0.1) # world.plot(column='pop_est', ax=ax, legend=True, cax=cax) fig.colorbar(cm.ScalarMappable(norm=colors.Normalize(vmin=np.nanmin(result), vmax=np.nanmax(result)), cmap='cool') , ax=ax,extend='both',fraction=0.010,cax=cax) return fig,ax showraster(r'two_region.tif')

Display raster image

2.5 Create a mask shape

import os
import geopandas
from shapely import geometry
import matplotlib.pyplot as plt
# Corresponds to Polygon in shapely.geometry, which is used to represent faces. Next, we create a polygon object composed of several Polygon objects
cq = geopandas.GeoSeries(geometry.Polygon([(47,35),(53,35),(54,48),(45,45)]),
                         index=['1'],  # Build an index field
                         crs='EPSG:4326',  # Coordinate system: WGS 1984
                         )
cq.to_file(r'simple_mask.shp',
           driver='ESRI Shapefile',
           encoding='utf-8')
gdf=geopandas.read_file(r'simple_mask.shp')
gdf.plot()

Create a mask shape

2.6 Simultaneous display

def showraster2(inputtif,inputshp):
    import rasterio
    from rasterio.plot import show
    from matplotlib import colors, cm
    rs =rasterio.open(inputtif)   
    rss=rs.read()
    #If the conditions are met, replace it; otherwise, keep it as it is
    result=np.where(rss==rss.min(),np.nan,rss)
    shp = gpd.read_file(inputshp)
    fig, ax = plt.subplots(figsize=(4,4))
    shp.plot(ax=ax,color='none')
    show(result, transform=rs.transform,ax=ax, cmap='cool')
    from mpl_toolkits.axes_grid1 import make_axes_locatable
    divider = make_axes_locatable(ax)
    cax = divider.append_axes("right", size="3%", pad=0.1)
    # world.plot(column='pop_est', ax=ax, legend=True, cax=cax)    
    fig.colorbar(cm.ScalarMappable(norm=colors.Normalize(vmin=np.nanmin(result), vmax=np.nanmax(result)), cmap='cool', ax=ax,extend='both',fraction=0.010,cax=cax))                ​​​​​​​

Simultaneous display

2.7 Mask extraction

# Use the mask above to extract the grid
def shp_mask(inputtif,inputshp,outtif):
    import fiona
    import rasterio
    import rasterio.mask
    rs = rasterio.open(inputtif,'r')
    with fiona.open(inputshp, "r") as shapefile:
        shapes = [feature["geometry"] for feature in shapefile]
    out_image, out_transform = rasterio.mask.mask(rs,shapes,crop=True)
    out_meta = rs.meta
    out_meta.update({"driver": "GTiff",
                     "height": out_image.shape[1],
                     "width": out_image.shape[2],
                     "transform": out_transform})
    with rasterio.open(outtif, "w", **out_meta) as dest:
        dest.write(out_image)
​​​​​​​
inputtif=r'two_region.tif'
inputshp=r'simple_mask.shp'
outtif=r'tif_mask.tif'
shp_mask(inputtif,inputshp,outtif

2.8 Result display

showraster2(r'tif_mask.tif',r'simple_mask.shp')

Result display

3 Extract grid data based on points

3.1 The first method

import geopandas
import rasterio
import matplotlib.pyplot as plt
from shapely.geometry import Point
# Create sampling points
points = [Point(101.4, 27.0), Point(101.6,26.6), Point(101.6,26.8), Point(102.0,27)]
gdf = geopandas.GeoDataFrame([1, 2, 3, 4], geometry=points, crs=4326)
src = rasterio.open(r'C:\Users\lenovo\Desktop\pzh_map_dispose\sf1.tif','r')
result1=src.read()
#If the conditions are met, replace it; otherwise, keep it as it is
result=np.where(result1==result1.min(),np.nan,result1)
result
# np.unique(rss[0])
from rasterio.plot import show
from matplotlib import colors, cm
fig, ax = plt.subplots()
# # transform rasterio plot to real world coords
# extent=[src.bounds[0], src.bounds[2], src.bounds[1], src.bounds[3]]
ax = rasterio.plot.show(src,ax=ax, cmap='gist_earth')
gdf.plot(ax=ax,color='red')
​​​​​​​fig.colorbar(cm.ScalarMappable(norm=colors.Normalize(vmin=np.nanmin(result), vmax=np.nanmax(result)), cmap='gist_earth', ax=ax,extend='both',fraction=0.05))

The first method of extracting grid data based on points out

coord_list = [(x,y) for x,y in zip(gdf['geometry'].x , gdf['geometry'].y)]
coord_list
gdf['value'] = [x for x in src.sample(coord_list)]
gdf.head()

The first method of extracting grid data from points Table

3.2 The second method

from rasterstats import gen_point_query
pointData=gdf
point_raster_value=gen_point_query(pointData['geometry'],r'C:\Users\lenovo\Desktop\pzh_map_dispose\sf1.tif')
print(*point_raster_value)
    Sign in for comments!
Comment list (0)

Powered by TorCMS (https://github.com/bukun/TorCMS).