Hyperbolic equation calculator

发布日期 : 2019-10-31 08:00:08 UTC      

分类 : Algebraic

App description

Hyperbola refers to the trajectory of a point whose absolute value is the difference between the distance from the fixed point on the plane to the two fixed points. It can also be defined as the point at which the ratio of the distance from the fixed point to the fixed line is a constant greater than 1. The trajectory. A hyperbola is a type of conic curve, that is, the intersection of a conical surface and a plane. Hyperbolic a²+b²=c²

Hyperbolic equation formula:

Hyperbolic focus FX axis = x<sub>0</sub> + √<span style="TEXT-DECORATION: overline">(a<sup>2</sup> + b<sup>2</sup>) </span>

Hyperbolic focus F Y axis = y<sub>0</sub>

Hyperbolic focus F' X axis = x<sub>0</sub> - √<span style="TEXT-DECORATION: overline">(a<sup>2</sup> + b<sup>2</sup >)</span>

Hyperbolic focus F' Y axis = y<sub>0</sub>

Asymptote H'L: y=(b/a)x + y<sub>0</sub> - (b/a)x<sub>0</sub>

Asymptote LH': y=(-b/a)x + y<sub>0</sub> + (b/a)x<sub>0</sub>

Hyperbolic eccentricity = √<span style="TEXT-DECORATION: overline">(a<sup>2</sup> + b<sup>2</sup>)</span> / a

Usage example

Input data:

x<sub>0</sub>:4

y<sub>0</sub>:5

a:7

b:6

Click "Calculate" to output data

Hyperbolic focus F: ( 13.219544, 5 )

Hyperbolic focus F': ( -5.219544, 5 )

Hyperbolic eccentricity: 1.317078

Progressive line equation H'L: y = -0.857143x + 8.428571

Progressive line equation L'H:y = 0.857143x + 1.571429